
Generalised electrodynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 1807

(http://iopscience.iop.org/0305-4470/11/9/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 11, No. 9, 1978. Printed in Great Britain. 
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Abstract. The extension of classical electrodynamics proposed by S R Milner is studied in 
a quaternionic notation. The Lagrangian formulation and the canonical formalism are 
presented in terms of vector potentials for classical and quantum free field theories. The 
case of massive vector fields is briefly studied and the possibility of interaction with 
non-conserved currents is suggested. 

1. Introduction 

Maxwell electrodynamics in classical as well as in quantum theory exhibits compli- 
cations not present in other field theories. There is a description in two types of 
variables, the fields E, H or the more convenient potential A@, which is, however, 
non-unique and admits gauge transformation. There are difficulties in Lagrangian 
formulation and, associated with this, singularities in the canonical quantisation pro- 
cedure. There is also the occurrence of an indefinite inner product in Lorentz 
covariant description such as the Gupta-Bleuler formalism. 

On the other hand one can formulate classical electrodynamics in terms of biqua- 
ternions and their functions (Weingarten 1973, Imaeda 1975). Such a formulation is 
very elegant and presents some unification of physical theories because all the most 
important fields can be described in terms of the theory of functions of a biquaternion 
variable. 

The quaternionic form of Maxwell electrodynamics suggests some generalisation 
of the Maxwell equations by adding a new scalar field to common electric and 
magnetic fields. This was first done by Milner (1963) who suggested that this addi- 
tional field has non-zero values only ‘inside’ the elementary particle and that it is 
responsible for binding forces in classical models of the extended electron, and other 
elementary particles (Gallop 1975). Such a generalisation of Maxwell theory admits 
the canonical formulation without any difficulties. One can then perform the pro- 
cedure of canonical quantisation of the free field theory. In fact we obtain Gupta- 
Bleuler theory but without a distinguished subspace of ‘the physical states’. Finally, 
we study the case of massive vector fields and present the simple classical model of 
interaction with a non-conserved current. 

2. Electrodynamics in a quaternionic notation 

The set of biquaternions Qc is a complex linear algebra generated by four elements 

0305-4770/78/0009-1807$01.00 @ 1978 The Institute of Physics 1807 



1808 R Alicki 

{uu; a = 0, 1 ,2 ,3}  satisfying the following relations: 
2 1, ( T k  = 1 

Ukkal= iu,, 

where k, 1, n are cyclic permutations of 1, 2, 3. We shall use the following notation 
and definitions: 

Qc 3 q = quru = q o ~ o  + 4. U ;  

4 = :qouo-q. U, q*=:qo*uo-q*.u,  

qu E c 

( 4 )  = :qo, (2.2) + --*--*- * q = : q  - 4  -quuuOI) 

where qp* is the complex conjugate of qu. We have the following important subset of a 
biquaternion space: 

(2.3) t 
Q,={q E Qc; q = q l .  

The set QR is very convenient for the description of the Minkowski space M4 (Synge 
1972). The isomorphism between Q R  and M4 is given by 

The proper Lorentz transformation is expressed as 

(2.5) x - x i  = axa + .fHjj’= U*.fd 

where uci = a*at = 1, a E Qc. The covariant gradient aouo + Vu is denoted by 3 and 

ai = a *$d. (2.6) 

One can show (Weingarten 1973, Imaeda 1976) that the following equation is 
equivalent to the Maxwell equations: 

aZ=J (2.7) 

where 2 = ( E + i H )  . U, E is an electric field, H is a magnetic field and Jl” is an 
external current density: 

Milner proposed to modify Maxwell theory by adding the scalar part to the field 
quaternion 2: 

2 = Zouo + (E + iH)  . u 
Z o = e + i h ,  e, h E R. 

The Maxwell-Milner equations now have the following forms in a common notation 
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(Milner 1963): 
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ae 
d i v E =  - -+pe  t = xo, c = 1 

at 

ah 
div H = - -+pm 

a t  

aH 
-+rot E = -grad h + jm 
a t  

dE 
- - r o t H =  -grade-j ,  
a t  

where J,” = be, j , )  and J k  = (am, jm) are external electric and magnetic currents, and 
J = J, + iJm. The scalar field Zo satisfies the following equation: 

CI 20 = d,J@ (2.10) 

and then is not produced by conserved currents. Now one can introduce the vector 
potential A = AWg, by the following definition: 

Z = S A  (2.11) 

aSA = J, aZ=aa=u. (2.12) 

and the Maxwell-Milner equation is equivalent to the following equation; 

We assume for simplicity that A = A t ,  i.e. there are no magnetic charges in the theory, 
but the formalism can also be developed without this restriction. For the complex 
potential (A # A t )  we obtain two kinds of photons, electric and magnetic photons, 
similar to particles and antiparticles in massive field theories. 

Under the condition A = A’ we obtain the well known relations: 

E = -grad Ao-aOA 

H = rot A (2.13) 

ZO = e  = aWA* = doAo+div A. 

The gauge transformation has the form 

A++A+a@, 

where @ = 5 = @*, a scalar field, and U @ = 0. 

(2.14) 

3. The canonical formalism 

The free field equation aZA = 0 can be obtained using the following Lagrangian 
density: 

A = A + .  (3.1) 

(3.2) 

2= -1. 4((dA)(Aa)+ (aA)(A?)) 

2 = +(E2 - H2- e*) = 20-$(a,A’”)2 

One can check that 

20=$(E2-H2) .  
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9 is the well known Fermi Lagrangian which is non-singular in contrast to go. 
The field T”, canonically conjugate to the field A”, is defined as 

T O  = aS/aA,, = - (aoAo+div A )  = - e  

m = a5?/aA = a& + gradAo = -E.  

(3.3) 

(3.4) 

The Hamiltonian is equal to 

H =  d3xX(x, t )  J 
= d3x[(aoA)’ - (aoAo)* + (div A)’- (grad Ao)’ + (rot A)’] (3.5) 

where 
3 

a = o  
X(x ,  t ) =  1 TaA“ -2. 

Now the canonical formalism can be developed in a standard way. 

(3.6) 

4. The quantum theory 

The quantum theory of Maxwell-Milner electrodynamics in a vacuum will be built up 
by using the method of canonical quantisation. In the place of the canonical variables 
of classical theory, A”, T”, we shall introduce the field operators A”, f?” acting in the 
Hilbert space of the state vectors. Field operators taken at the same instant of time f 
satisfy the following commutation relations (CCR): 

[Aa (x, t ) ,  T@(Y,  t ) ]  = 6a86 (x - Y 1, 
(4.1) 

&(x, t ) ,  A,¶(% t ) l =  [ ~ x ,  t ) ,  7 j S b 5  t ) ~  = 0. 

[d,(x), A , ( x ’ ) l =  ig,D(x - x ’ ) .  (4.2) 

One can compute the CCR for the field operators in a covariant form 

Introducing the Weyl form of CCR (4.2) one can construct the c*-algebra 8 of 
observables for the vector potential (Carey, et a1 1977). This is obviously the same 
algebra as in Maxwell theory and the difference lies in the physical interpretation. In 
Maxwell theory there are two methods of eliminating the unnecessary degrees of 
freedom. The first distinguishes the Hilbert space of physical states z p h y s  in the 
Hilbert space X related to the representation of 9l by introducing the non-positive 
definite scalar product (Gupta-Bleuler formalism, see Strocchi and Wightman 1974). 
The physical space Xphyr has the structure of the quotient space; X p h y s  = X / X o  where 

Xphys  = {+ E x; (+la,A”(x>l+> = 0, x E MI. (4.3) 

In the second method (Fermi quantisation) one can construct the representation of the 
physical algebra of observables n p h y s  which has the structure of a factor algebra; 
Mphys= 9 l / I  (see Carey et a1 1977 for details). In Maxwell-Milner theory the full 
algebra 9l has physical meaning. There exists an interesting subalgebra 8, generated 
by fields e^‘*’(x)= a,dU‘*’(x) .  Using (4.2) we obtain the relations 

[e^‘*’(X), e^‘*’(X’)] = 0 (4.4) 
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and then Bo is a complex Abelian subalgebra of 8. It follows that the additional field 
e(x) has a classical character. The problem of a concrete representation of 8 in the 
Hilbert space has a non-unique solution and will not be discussed here. 

5. The massive vector field 

The massive vector field theory can also be modified in the same manner as elec- 
trodynamics by omitting the Lotentz condition awA” = 0. We can use the Lagrangian 
density (3.1) with the additional mass term tm2(AA) and repeat the procedure of 
canonical quantisation. In contrast to the standard theory, all components of the 
vector field A ”  are independent canonical variables and the algebra of observables 
contain an Abelian subalgebra generated by the ‘classical’ field t ( x )  = d,A@(x). This 
modified theory can also be formulated for complex vector fields. 

The above formulation of the vector field theory (massive or massless) leads to 
Hamiltonians which are unbounded from below but we are not sure that this property 
must be necessary forbidden. 

6. The non-conservation of charge 

The Milner theory of vector fields (massive or massless) admits an interaction of the 
vector field with an external non-conservative current. In that case the equation of 
motion has the form 

@-m2)A” = J *  

@-m2)e =a,~”. 
and then 

As a simple example we study the electromagnetic field (m = 0) generated by a 
particle with a charge q which was created at a point xo = 0 and at time to = 0. 

Then we have 

a”JF = q S ( x )  = qS(t)S(x). (6.3) 
The current J” in the particle’s rest frame has the following form: 

J” = (Jo, 0,  0 ,  0), J0 = q @ ( t ) S ( x )  (6.4) 
One can easily obtain from (6.2) that 

and 
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This electromagnetic field consists of the common Coulomb electric field and the 
spherical wave which contains the scalar field e, and the longitudinal electric field 
E,,,,. Now one can compute the energy $ ( t )  of the field using the Hamiltonian HI of 
the electromagnetic field interacting with an external current: 

~ ~ ( t )  = d3xx1(x, t )  (6.7) 

XI (x, t )  = X(X,  t )  - Jc” (x, t)A, (x, t )  (6.8) 

%(t $Coulomb + %wave (6.9) 

J 
where 

and Z(x, t )  is given by (3.5). After the simple calculation we obtain (formally): 

+w 

%,,,,= -4’5 S2(r)dr. 
477 -w 

(6.10) 

(6.11) 

The integrals (6.10), (6.11) are divergent because of the point-like structure of the 
particle and the rapid creation of it. However one can regularise them by introducing 
a smooth form factor Sres(x) in place of S ( x )  in (6.3). The most important fact is that 
the energy of a spherical wave is negative. It follows that we can study the field 
theoretical models for which the charge Q = d3xJ0 can be produced from a ‘vacuum’ 
and the unboundedness of the Hamiltonian of the vector field allows creation of 
massive particles carrying that charge. The mass M of this particle is equal to: 

M = - %E&, and M = $:&lomb + SM 

where SM is a non-electromagnetic mass. 

7. Conclusion 

The generalisation of electrodynamics (and massive vector field theory) presented 
above was suggested by the mathematical symmetry in a quaternionic notation and 
the possibility of canonical quantisation without any constraints. The physical 
significance of this formulation is an open question and will be studied in the future. 
The author hopes that the possibility of interaction with non-conserved currents 
should help in the explanation of the charge asymmetry of the visible Universe. 
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